General Size-Change Termination and Lexicographic Descent
نویسنده
چکیده
منابع مشابه
Ramsey vs. Lexicographic Termination Proving
Termination proving has traditionally been based on the search for (possibly lexicographic) ranking functions. In recent years, however, the discovery of termination proof techniques based on Ramsey’s theorem have led to new automation strategies, e.g. size-change, or iterative reductions from termination to safety. In this paper we revisit the decision to use Ramsey-based termination arguments...
متن کاملSize-Change Termination, Monotonicity Constraints and Ranking Functions
Size-Change Termination (SCT) is a method of proving program termination based on the impossibility of infinite descent. To this end we may use a program abstraction in which transitions are described by monotonicity constraints over (abstract) variables. Size-change graphs are a subclass where only constraints of the form x > y and x ≥ y are allowed. Both theory and practice are now more evolv...
متن کاملMonotonicity Constraints for Termination in the Integer Domain
Size-Change Termination (SCT) is a method of proving program termination based on the impossibility of infinite descent. To this end we use a program abstraction in which transitions are described by monotonicity constraints over (abstract) variables. When only constraints of the form x > y and x ≥ y are allowed, we have size-change graphs. In the last decade, both theory and practice have evol...
متن کاملFinding Lexicographic Orders for Termination Proofs in Isabelle/HOL
We present a simple method to formally prove termination of recursive functions by searching for lexicographic combinations of size measures. Despite its simplicity, the method turns out to be powerful enough to solve a large majority of termination problems encountered in daily theorem proving practice.
متن کاملPolyranking for Polynomial Loops
Although every terminating loop has a ranking function, not every loop has a ranking function of a restricted form, such as a lexicographic tuple of polynomials over program variables. We propose polyranking functions as a generalization of ranking functions for analyzing termination of loops. We define lexicographic polyranking functions in a general context and then specialize their synthesis...
متن کامل